CEAC 105
 GENERAL CHEMISTRY
 Experiment 4
 Determination of The Atomic Weight of a Metal

Purpose: To determine atomic weight of a metal by measuring the volume of the hydrogen gas liberated from the oxidation of a metal with an acid reaction.

MATERIALS:

A piece of metal	Beaker	Methyl orange
Cotton	Burette	Hydrochloric acid (HCl)

THEORY:

A metal, which is a good reducing agent, will react with hydrochloric acid, liberating hydrogen gas and forming a salt.

M (solid) $+\mathrm{nH}^{+}$(aqueous) $--->\mathrm{M}^{\mathrm{n}+}$ (aqueous) $+\mathrm{n} / 2 \mathrm{H}_{2}$ (gas)
In this experiment, a weighted sample of metal will be completely dissolved in HCI solution, and the volume of hydrogen liberated will be determined from the volume of water that it displaces. From this data the atomic weight of the metal will be calculated. This calculated value is the experimental value of the atomic weight of the metal.

After the determination of the atomic weight of the metal, your assistant will tell you the name and the atomic weight of the metal (theoretical value). Now, you can calculate percentage error of atomic weight calculation. The valence of the metal is taken as $n+$ for the reaction given above.

A mole is defined as the amount of substance that contains the same number of chemical units as the number of atoms in exactly 12.0000 g of ${ }_{6}^{12} \mathrm{C}$

1 mole ${ }_{6}^{12} \mathrm{C}$ atoms $=12.0000 \mathrm{~g}{ }_{6}^{12} \mathrm{C}$
A mole of atoms, therefore, consists of Avogadro's number of atoms and has a mass in grams numerically equal to the atomic weight of the element, shortly.

Number of moles of an atom $=\frac{\text { weight }}{\text { Atomic Weight }}$

Number of moles of a molecule $=\frac{\text { weight }}{\text { Molecular Weight }}$

Before doing this experiment, it will be necessary for the student to review his knowledge about the ideal gas equation.

Ideal Gas Equation:

The behavior of an ideal gas is expressed by the well-known equation given below.

$$
\mathrm{PV}=\mathrm{nRT} \quad \text { Ideal Gas Equation }
$$

In the equation the units are under STP (1 atm and $0^{\circ} \mathrm{C}, 273 \mathrm{~K}$) 1 mole of ideal gas occupies 22.4 L volume. So;

$$
R=\frac{(1 \mathrm{~atm}) \times(22.4 \mathrm{~L})}{(1 \mathrm{~mol}) \times(273 \mathrm{~K})}=0.00823 \mathrm{~L} \times \mathrm{atm} / \mathrm{mol} \times K
$$

EXAMPLE 1:

Standard conditions are defined as $0^{\circ} \mathrm{C}$ and 1 atm for temperature and pressure, respectively. Using ideal gas equation, calculate the volume that is occupied by one mole of an ideal gas under the standard conditions (STP).

SOLUTION:

$\mathrm{T}=0^{\circ} \mathrm{C}$
$\mathrm{T}=0^{\circ} \mathrm{C}+273.15=273.15 \mathrm{~K}$
$\mathrm{PV}=\mathrm{nRT} \mathrm{V}=\mathrm{nRT} / \mathrm{P}$
$\mathrm{V}=(1 \mathrm{~mole}) *\left(0.082 \mathrm{~L} . \operatorname{atm} \cdot \mathrm{mole}^{-1} \mathrm{~K}^{-1}\right)^{*}(273 \mathrm{~K}) / 1 \mathrm{~atm}$
$\mathrm{V}=22.4 \mathrm{~L} / \mathrm{mole}$

EXAMPLE 2:

In a reaction, 334 mL of H_{2} gas is liberated at a pressure of 674 mm Hg and a temperature of $17^{\circ} \mathrm{C}$. Calculate the number of moles of H_{2} gas liberated.

SOLUTION:

$760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm}$
$\mathrm{P}=(674 \mathrm{~mm} \mathrm{Hg}) *(1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg})=0.887 \mathrm{~atm}$
$\mathrm{T}=17^{\circ} \mathrm{C}+273.15=290.15 \mathrm{~K}$
$\mathrm{V}=0.334 \mathrm{~L}$
$\mathrm{R}=0.082 \mathrm{~L} . \mathrm{atm} . \mathrm{mole}^{-1} \mathrm{~K}^{-1}$
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{0.887 \times 0.334}{0.082 \times 290.15}=0.012$ moles of H_{2}

EXAMPLE 3:

0.26 g of an unknown metal is liberating 0.004 moles of H_{2} gas. If the valence of this metal is $2+$, find the atomic weight of this metal. Find the name of this metal using the periodic table.

X (solid) $+\mathrm{nH}^{+}$(aqueous) --- $>\mathrm{X}^{\mathrm{n}+}$ (aqueous) $+\mathrm{n} / 2 \mathrm{H}_{2}$ (gas)

SOLUTION:

According to the stoichiometry of the reaction;
Number of moles of metal equals to the number of moles of the metal
Number of moles $=\frac{\text { weight }}{\text { Atomic Weight }} \longrightarrow \quad$ At. Wt. $=\frac{\text { weight }}{\text { number of moles }}=\frac{0.26}{0.004}=65.0 \mathrm{~g} / \mathrm{mole}$
Closest value to this experimental atomic weight value is 65.39 , thus the metal is predicted to be Zinc.

Table 1: Conversion of pressure units

Units	Pa	psi	atm	bar	torr
Pa	$1 \mathrm{~N} / \mathrm{m}^{2}$	$1.45 \times$ 10^{-4}	$9.869 \times$ 10^{-6}	10^{-5}	$7.5 \times$ 10^{-3}
psi	$6.894 \times$ 10^{3}	$1 \mathrm{lb} / \mathrm{in}^{2}$	$6.8 \times$ 10^{-2}	$6.894 \times$ 10^{-2}	51.714
atm	1.01325 $\times 10^{5}$	14.695	P_{0}	1.01325	760
bar	10^{5}	14.5	0.9869	10^{6} dyne/ cm^{2}	750
torr	133.322	$1.93 \times$ 10^{-2}	$1.315 \times$ 10^{-3}	$1.333 \times$	
10^{-3}					

Dalton's Law of Partial Pressure

Dalton's Law (also called Dalton's Law of Partial Pressures) states that the total pressure exerted by the mixture of non-reactive gases is equal to the sum of the partial pressures of individual gases. Mathematically, this can be stated as follows:
$P_{\text {total }}=P_{1}+P_{2}+P_{3}+\cdots+P_{n}$
where $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{n} represent the partial pressures of each compound. It is assumed that the gases do not react with each other.

Collecting Gases Over Water

The amount of gas present can be determined by collecting a gas over water and applying Dalton's Law.

EXAMPLE 4:

O_{2} gas is collected in a pneumatic trough with a volume of 0.155 L until the height of the water inside the trough is equal to the height of the water outside the trough. The atmospheric pressure is 754 torr, and the temperature is 295 K . How many moles of oxygen are present in the trough? (At 295 K , the vapor pressure of water is 19.8 torr.)

SOLUTION:

The total pressure in the tube can be written using Dalton's Law of Partial Pressures:
$P_{\text {total }}=P_{\mathrm{H}_{2} \mathrm{O}}+P_{\mathrm{O}_{2}}$
Rearranging this in terms of $P_{O_{2}}$, we have:

$$
\mathrm{P}_{\mathrm{O}_{2}}=P_{\text {total }}-P_{\mathrm{H}_{2} \mathrm{O}}
$$

Because the height of the water inside the tube is equal to the pressure of the water outside the tube, the total pressure inside and outside the tube must be equal to the atmospheric pressure. With substitution, we have:
$\mathrm{P}_{\mathrm{O}_{2}}=\mathrm{P}_{\text {total }}-\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=754-19.8=734$ torr $=0.966 \mathrm{~atm}$
Next, we apply the Ideal Gas Law:
$\mathrm{n}=\frac{\mathrm{P} \times \mathrm{V}}{\mathrm{R} \times \mathrm{T}}=\frac{(0.966 \mathrm{~atm}) \times(0.155 \mathrm{~L})}{(0.082 \mathrm{~L} \times \mathrm{atm} / \mathrm{mol} \times \mathrm{K})^{) \times(295 \mathrm{~K})}}=0.00619 \mathrm{~mol} \mathrm{O}_{2}$

Table 2: Partial pressure values of water at different temperature values

$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{P}($ torr $)$
17	14.5
18	15.5
19	16.5
20	17.5
21	18.7
22	19.8

$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	\mathbf{P} (torr)
23	21.1
24	22.4
25	23.8
26	25.2
27	26.7
28	28.4

PROCEDURE:
3. Weigh out about 1 cm length of your metal.
Record this weight.
4. Take the sample and place it in a small bag made
from a piece of cotton. (Wrap around the metal by
a piece of cotton.)
5. Tie this metal in cotton with a piece of thread and
hang it a few centimeters above from the top of the
liquid in the burette, providing that it does not
come into contact with the acid solution. You may
drop it into the solution as well.
7. Put some water in the beaker and set up the
apparatus as shown in the figure, read and record
the first height of pink acidic solution (V_{1}).
8. Make sure the cotton is stacked at the end of
burette. When the system is shown to be airtight,
wait until the acid solution comes in contact with
the metal. You will see the hydrogen gas is being
produced as bubbles near the metal, and some
water will pour into the beaker.
9. After the metal has completely dissolved, read the volume of the water in the burette and record it $\left(\mathrm{V}_{2}\right)$. The displaced amount of water in mL will be taken as the amount of hydrogen gas liberated. Record the room temperature. Record the atmospheric pressure, $\mathrm{P}_{\mathrm{atm}}$ and the vapor pressure of water, $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$ at this temperature.

10. Calculate the partial pressure of H_{2} gas, $\mathrm{P}_{\mathrm{H}_{2}}$, in the flask; express it in the units of atm.
11. Calculate the number of moles of H_{2}.
12. What is the number of moles of metal?
13. Calculate the atomic weight of metal.
14. Ask your assistant the name of the metal.
15. Ask your assistant the exact atomic weight of the metal.
16. Calculate the percent error for the experimental atomic weight of the metal.

DATA SHEET

Determination of The Atomic Weight of a Metal

Student's Name:

Laboratory Section/Group Number:
Assistant's name and signature:
Date:

DATA

1. Weight of the metal (W)
2. Initial height of the water $\left(\mathrm{V}_{1}\right)$
3. Final height of the water $\left(\mathrm{V}_{2}\right)$
4. Volume of the water displaced $\left(\mathrm{V}_{\mathrm{H}_{2} \mathrm{O}}=V_{1}-V_{2}\right)$
5. Volume of H_{2} gas produced $\left(\mathrm{V}_{\mathrm{H}_{2}}=\mathrm{V}_{\mathrm{H}_{2} \mathrm{O}}\right)$
6. Temperature $\left(\mathrm{T}_{\text {room }}=\mathrm{T}_{\mathrm{H}_{2}}\right)$
7. Vapor pressure of $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{T}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$ (Use Table 2)
8. Atmospheric pressure $=\mathrm{P}_{\mathrm{atm}}$ (ask your assistant)
9. Partial pressure of H_{2} gas $\mathrm{P}_{\mathrm{H}_{2}}=\mathrm{P}_{\mathrm{atm}}-\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$
10. Number of moles of $\mathrm{H}_{2}, \mathrm{n}_{\mathrm{H}_{2}}=\frac{\mathrm{P}_{\mathrm{H}_{2} \mathrm{~V}_{\mathrm{H}_{2}}}}{\mathrm{RT}_{\mathrm{H}_{2}}}$
11. Number of moles of metal
12. Atomic $\mathrm{Wt}=\frac{\text { Weight }}{\text { number of moles of metal }}$
$=$ \qquad
13. Name of the metal
14. Percent error for experimental Atomic Weight
$=$ \qquad
$=$
\qquad

CEAC 105 GENERAL CHEMISTRY
 Experiment 5
 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate $\left(\mathrm{CuSO}_{4}\right)$ solution will be conducted. This will help you to differentiate limiting and excess reactant in a chemical reaction. Finally the theoretical and percent yield of this reaction will be calculated.

Theory

Stoichiometry is the measurement of quantitative relationships in chemical formulas and equations.
Mostly in chemical reaction two or more reactants (reagents) are placed. The reagent that is totally consumed before other reactants at that time reaction stops defined as limiting reagent. Limiting reagent is the reactant which is totally consumed before other reactants. The limiting reactant limits the amount of product that can be formed since the consumption of the reactant stops the reaction.The reactant that is remained once the limiting reagent is consumed is called as excess reagent.

Example : How many moles of Ag are in 1.75 mol of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$?
There are 2 moles of Ag atoms for each $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ formula unit
Therefore,

$1.75 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CrO}_{4} \times 2=3.5 \mathrm{~mol} \mathrm{Ag}$

Example: Sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, reacts with calcium chloride, CaCl_{2}, to form calcium carbonate, CaCO_{3} and sodium chloride, NaCl . In an experiment 53 grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 44.4 grams of CaCl_{2} were mixed and 23.6 gr CaCO 3 was obtained. Which is the limiting reactant? What is the percent yield of CaCO_{3} ?
(Molecular weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g} / \mathrm{mole}, \mathrm{CaCl}_{2}=111 \mathrm{~g} / \mathrm{mole}, \mathrm{CaCO}_{3}=100 \mathrm{~g} / \mathrm{mole}, \mathrm{NaCl}=58.5$ $\mathrm{g} /$ mole)

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})
$$

Mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}: 53 / 106=0.3$ moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are present.
Mole of $\mathrm{CaCl}_{2}: 44.4 / 111=0.4$ moles of CaCl_{2} are present.

1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts with 1 mole of CaCl_{2} according to the above equation.
$\frac{1 \text { mole } \mathrm{Na}_{2} \mathrm{CO}_{3}}{0.3 \text { mole } \mathrm{Na}_{2} \mathrm{CO}_{3}}=\frac{1 \text { mole } \mathrm{CaCl}_{2}}{\mathrm{x}} \quad \mathrm{x}=0.3$ moles of CaCl_{2} are needed.
0.3 moles of CaCl_{2} are needed and 0.4 moles of CaCl_{2} are present. Therefore, CaCl_{2} is excess reagent and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is limitng reactant.

Since $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is limiting reactant it limits the amount of the product, CaCO_{3}, that will be formed.
$\frac{1{\mathrm{~mole} \mathrm{Na}_{2} \mathrm{CO}_{3}}_{0.3 \text { mole } \mathrm{Na}_{2} \mathrm{CO}_{3}}=\frac{1 \text { mole } \mathrm{CaCO}_{3}}{x}}{x}$
$x=0.3$ moles of CaCO_{3} will be formed
$0.3^{*} 100=30 \mathrm{gr}$ of CaCO_{3} will be formed. This amount is theoretical yield. Since the actual yield is the amount of product given, the percent yield will be calculated by the formula given below;

Percent yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100$

Then, percent yield for CaCO_{3} is;
$(23.6 / 30) * 100=78.7 \%$
In this experiment stoichiometric principles will be used to obtain the appropriate equation between the reaction of iron metal and copper(II) sulfate solution. Whent the reaction starts, the formation of metallic copper, which is precipitating during reaction as a finely divided reddish-orange powder will be observed. This reaction is one of the example of single substitution reaction in which one element "displaces" with another element in a compound The element which has ability of displacing other element from a compound is said to be "more active" than the displaced one. In this experiment, iron is more active than copper.

Two distinct forms of iron are present, namely Ferrous, Fe^{2+} and Ferric, Fe^{3+}. Stoichiometric principles will be used to determine which reaction is more dominant compared to other by examining the reaction between iron and copper (II) sulfate solution. If Fe^{2+} is formed, then equation (1) is dominant, but equation (2) will be selected if Fe^{3+} is formed. This can be determined by taking the mole ratio of copper to iron. If the moles of copper is equal to the moles of iron, then equation (1) has taken place. If you obtain 1.5 moles of copper per mole of iron, in this case equation (2) should be selected Find out which equation is corresponding to the results of the experiment you have done.

Equation (1) $\quad \mathrm{Fe}_{(\mathrm{s})}+\mathrm{CuSO}_{4(\mathrm{aq})} \rightarrow \mathrm{FeSO}_{4(\mathrm{aq})}+\mathrm{Cu}_{(\mathrm{s})}$, other representation is

$$
\mathrm{Fe}_{(\mathrm{s})}+\mathrm{Cu}_{(\mathrm{aq})}^{2+} \rightarrow \mathrm{Fe}_{(\mathrm{aq})}^{2+}+\mathrm{Cu}_{(\mathrm{s})}
$$

Equation (2) $\quad 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CuSO}_{4(\mathrm{aq)}} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3_{(\text {(aq) }}}+3 \mathrm{Cu}_{(\mathrm{s})}$,
other representation is

$$
2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+3 \mathrm{Cu}_{(\mathrm{s})}
$$

To the known amount of iron, excess of copper (II) sulfate solution will be added. The purpose of using excess solution is owing to provide the complete reaction of iron. The metallic copper produced will be weighed after washing and drying processes and these weighings will be used to calculate the moles of iron used and the moles of copper formed at the end of the raection.

Materials

Fe powder	Acetone	Glass stick
Cupper (II) Sulfate $\left(\mathrm{CuSO}_{4}\right)$	Beaker	Bunsen burner

Procedure

The Reaction of Iron with Copper(II) Sulfate

1. Weigh a dry and clean 100 or 250 mL beaker and record the weight of it onto your data sheet. then, accurately weigh 1.00 gram of iron powder into this beaker. Do not exceed 1.01 grams.

2. Measure 30 mL of $1.0 \mathrm{M} \mathrm{CuSO}_{4}$ solution by using a
graduated cylinder. Pour this solution into another beaker,
and heat gently to almost boiling.
3. Slowly add hot CuSO 4 solution to the beaker that contains
the iron powder. Stir the mixture a few times until
completeness of the reaction. You should see copper forming.
When the reaction has finished, allow the copper product to
cool.
4. Then carefully decant the liquid from the copper into the
waste container. Be careful not to lose any copper.
5. Add about 10 mL of distilled water to the solid copper and
swirl to wash any remaining ions from the copper. Decant
the wash water from the copper and add 10 more mL of
distilled water, swirl and decant again. Wash copper particles
finally with several mL of acetone (CAUTION-Acetone is
very flammable). Swirl and allow to stand a few minutes.
Decant off the acetone.

DATA SHEET

Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

 :Date:
Laboratory Section/Group No :

Assistant's Name and Signature:

Data and Calculations

Mass of empty beaker
Mass of iron used
Moles of iron used
Mass of beaker plus copper :
Mass of copper formed :
Moles of copper formed :
Moles of Cu divided by moles of Fe :

Reaction Equation

Limiting Reagent

Theoretical and Percent Yield

CEAC 105 GENERAL CHEMISTRY
 Experiment 6 Heat of Neutralization

Purpose: To calculate enthalpy change of a reaction by using calorimeter and understand the difference between endothermic and exothermic reactions

Prelaboratory Work

Before the experiment in the laboratory, you should be able to answer these questions.

1. Calculate the volume of solution of $1.50 \mathrm{M} \mathrm{HNO}_{3}$ required in part (A) of the procedure.
2. Calculate the mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ required in part (B) of the procedure. Show your reasoning.
3. Explain in stepwise fashion (number the steps) how you will determine the $\Delta \mathrm{H}$ of formation of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ from your data and information given in the experiment. Use actual numbers whenever possible.
4. How many joules are required to change the temperature of 80.0 g of water from $23.3^{\circ} \mathrm{C}$ to $38.8^{\circ} \mathrm{C}$?

Theory

In chemical reactions, energy change is observed. This energy change is usually in the form of heat and at constant pressure it is defined as heat of reaction or enthalpy change $\mathbf{(} \mathbf{\Delta H} \mathbf{H}$. To form 1 mole of compound from its constituent elements, necessary amount of enthalpy change occurs and this
change is defined as enthalpy of formation. If heat is released during the reaction, $\Delta \mathrm{H}$ is shown with negative sign and the reaction is called exothermic reaction. If heat is absorbed during the reaction, $\Delta \mathrm{H}$ is shown with positive sign and the reaction is called endothermic reaction.
Direct measurement of enthalpies of formation is difficult experimentally, so indirect methods involving enthalpies of reaction are used. Hess's Law states that the change in a thermodynamic property such as enthalpy depends on the initial and final states and is independent of path followed. An example for Hess's Law is given below.
$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta \mathrm{H}_{\text {formation }}\left(\mathrm{NH}_{3}(\mathrm{~g})\right)=\Delta \mathrm{H}_{1}$
$\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{aq}) \quad \Delta \mathrm{H}_{\text {dissolving }}=\Delta \mathrm{H}_{2}$

Assume that $\Delta \mathrm{H}_{1}$ and $\Delta \mathrm{H}_{2}$ are known. If first and second reactions are added, net reaction becomes;
$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}(\mathrm{aq}) \quad \Delta \mathrm{H}_{\text {formation }}\left(\mathrm{NH}_{3}(\mathrm{aq})\right)=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}$
which is also formation reaction of $\mathrm{NH}_{3}(\mathrm{aq})$.
Given that $\Delta \mathrm{H}_{1}=-45.8 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}_{2}=-35.4 \mathrm{~kJ} / \mathrm{mol}$, we can calculate the $\Delta \mathrm{H}$ formation of $\mathrm{NH}_{3}(\mathrm{aq})$ as $-81.2 \mathrm{~kJ} / \mathrm{mol}$.

The heat is measured experimentally by allowing the reaction to take place in a thermally insulated vessel called as calorimeter. If the calorimeter is perfectly insulated, no heat change occurs between system and surrounding and the system is defined as adiabatic ($\mathrm{Q}=0$). Consequently, at constant pressure, $\Delta \mathrm{H}_{\text {system }}$ is also equal to zero. The formulation of enthalpy change of the system, $\Delta \mathrm{H}_{\text {system }}$, is shown as in Equation (1).
$\Delta H_{\text {system }}=\Delta \mathrm{T}$ (heat capacity of calorimeter + heat capacity of contents)
For endothermic reaction in adiabatic system, Equation (1) can be written as below.
$\Delta \mathrm{H}_{\text {system }}=\mathrm{n} \Delta \mathrm{H}_{\text {reaction }}+\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}$
$0=\mathrm{n} \Delta \mathrm{H}_{\text {reaction }}+\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}$
$\mathrm{n} \Delta \mathrm{H}_{\text {reaction }}=-\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}$
In a similar manner, for exothermic reaction in an adiabatic system, Equation (1) can be simplified as:
$\Delta H_{\text {system }}=-n \Delta H_{\text {reaction }}+\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}$
$0=-\mathrm{n} \Delta \mathrm{H}_{\text {reaction }}+\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}$
$\mathrm{n} \Delta \mathrm{H}_{\text {reaction }}=\mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}$
In this experiment, you will determine the heat of formation of various ammonium salts $\mathrm{NH}_{4} \mathrm{X}(\mathrm{s})$ where X is $\mathrm{Cl}, \mathrm{NO}_{3}$ or SO_{4} by combining measurements of the heat for the neutralization reaction;
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HX}(\mathrm{s}) \rightarrow \mathrm{NH}_{4} \mathrm{X}(\mathrm{aq}) \quad \Delta \mathrm{H}_{\text {neut }}$

And the heat of the dissolution reaction;

$$
\mathrm{NH}_{4} \mathrm{X}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{X}(\mathrm{aq}) \quad \Delta \mathrm{H}_{\text {diss }}
$$

with known heats of formation of $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{HX}(\mathrm{aq})$.

Materials

Nitric acid $\left(\mathrm{HNO}_{3}\right)$	250 mL beaker	Graduated cylinder
Ammonia $\left(\mathrm{NH}_{3}\right)$	Thermometers	
Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$	Styrofoam cups	

Procedure

PART A: Heat of Neutralization

1. Obtain a sytrofoam cup. In the first cup, place 50 mL of $1.5 \mathrm{M} \mathrm{NH}_{3}$.

2. Place a thermometer in the cup containing the NH_{3} and
record temperature at 30 seconds intervals.
3. Add the acid solution to the NH_{3} and swirl to mix.
Continue taking temperature data at 30 seconds
intervals while swirling the solution occasionally.
PART B: Dissolving
1. Place a volume of distilled water equal to the final
volume of solution from part (A) in a Styrofoam cup and
record temperature data at 30 seconds intervals.
beaker.

3. Immediately, add the weighed amount of salt, swirl to dissolve (use stirring rod if necessary), and continue taking temperature data at 30 seconds intervals.

Calculations

1. Plot temperature versus time graph using your data and determine $\Delta \mathrm{H}_{\text {neut }}$ for (a) and $\Delta \mathrm{H}_{\text {diss }}$ for (b).
2. Take $\Delta \mathrm{H}_{\mathrm{f}}$ of $1.5 \mathrm{M} \mathrm{NH}_{3}$ as $-81.2 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}_{\mathrm{f}}$ of 1.5 M HCl as $-165.1 \mathrm{~kJ} / \mathrm{mol}$, calculate the $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$.
3. Do the same calculations for $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$ using $-206.0 \mathrm{~kJ} / \mathrm{mol}$ for the $\Delta \mathrm{H}_{\mathrm{f}}$ of $1.5 \mathrm{M} \mathrm{HNO}_{3}$.
4. Calculate $\Delta \mathrm{H}_{\mathrm{f}}$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ using $-884.2 \mathrm{~kJ} / \mathrm{mol}$ for the $\Delta \mathrm{H}_{\mathrm{f}}$ of $1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. [Note that all $\Delta \mathrm{H}_{\mathrm{f}}$ are per mol (not per 1.5 mol)]

DATA SHEET

Heat of Neutralization

Student's Name	:	Date:
Laboratory Section/Group No	$:$	
Assistant's Name and Signature	$:$	
Prelaboratory Work		

1. Volume of $1.5 \mathrm{M} \mathrm{HNO}_{3}$ solution:
2. Mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}$:

Time (s)	Temperature of NH_{3} solution in ${ }^{\circ} \mathrm{C}$ before adding $1.5 \mathrm{M} \mathrm{HNO}_{3}$	Temperature of distilled water in ${ }^{\circ} \mathrm{C}$ before $\mathrm{NH}_{4} \mathrm{NO}_{3}$
0		
30		
60		
90		
120		
150		
180	in ${ }^{\circ} \mathrm{C}$	
Time (s)	Temperature of $\mathrm{NH}_{3}+1.5 \mathrm{M} \mathrm{HNO}_{3}$ solution	
0		
30		
60		
90		
120		

150		
180		

Results

1. Calculate $\Delta \mathrm{H}_{\text {neutralization: }}$

2. Calculate $\Delta \mathrm{H}_{\text {dissociation }}$:

3. Calculate $\Delta \mathrm{H}_{\text {formation }}$ of $\mathrm{NH}_{4} \mathrm{NO}_{3}$:
